Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution.

نویسندگان

  • Filippo Cassini
  • Charlotte Scheutz
  • Bent H Skov
  • Zishen Mou
  • Peter Kjeldsen
چکیده

Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution. Installed probes logging the temperature and moisture content of the methane oxidation layer at different depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in the range of 25-50°C at the deepest measuring point due to the microbial processes occurring in the layer. The moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane oxidation layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)

One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for ...

متن کامل

Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)

One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for ...

متن کامل

Estimation and Modeling of Biogas Production in Rural Small Landfills (Case Study: Chaharmahaal and Bakhtiari and Yazd Rural Areas)

One of the main factors contributing to greenhouse gas emissions in the environment is the production of pollutant gases in landfills. Collecting the landfill gases (LFG) effectively reduces the emission of gasses from the landfill site. A precise collection system for LFG can create the potential for energy generation in addition to emissions reduction. However, in Iran, the implementation of ...

متن کامل

Enhancing Methane Oxidation in Landfill Cover Using Brewery Spent Grain as Biocover

Landfill gas (LFG) is a potent greenhouse gas (GHG) generated by anaerobic degradation of decomposable municipal solid wastes (MSW). LFG contains (50-60%) of methane (CH4) and (40–50%) carbon dioxide (CO2). If a landfill is neither aerated nor equipped with gas capture systems, the LFG emissions, mainly CH4, in the cover soil is best reduced by using a biocover. Biocovers normally act as a biof...

متن کامل

Prediction of Greenhouse Gas Emissions in Municipal Solid Waste Landfills Using LandGEM and IPCC Methods in Yazd, Iran

Introduction: The increase in greenhouse gas (GHG) emissions has changed the global temperature and had a negative impact on global climate conditions. Landfill gas is one of the major GHG contributors. With the knowledge of GHG inventory, it is possible to carry out disaster prevention measures. Materials and Methods: In this study, tow Landfill Gas Emissions Modeling (LandGEM) and Intergover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Waste management

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2017